p73 and Reelin in Cajal-Retzius cells of the developing human hippocampal formation.
نویسندگان
چکیده
In the fetal human hippocampus, Cajal-Retzius (CR) cells coexpress p73, a p53-family member involved in cell survival and apoptosis, and the glycoprotein reelin, crucial for radial migration. We distinguish two populations of putative CR cells. (1). p73/reelin expressing cells appear around 10 gestational weeks (GW) at the cortico-choroid border in the temporal horn of the lateral ventricle (the ventral cortical hem) and occupy the marginal zone (MZ) overlying the ammonic and dentate primordia. (2). Additional p73-positive cells appear from 14 GW onward in the neuroepithelium near the dentate-fimbrial boundary and spread toward the pial surface, flanking the migrating secondary dentate matrix. From 13 to 17 GW, large parts of the dentate gyrus are almost devoid of CR cells. p73/Reelin-positive CR cells appear in the MZ of the suprapyramidal blade at 16 GW and around 21 GW in the infrapyramidal blade. The p73-positive cells of the dentate-fimbrial boundary express reelin when they are close to the pial surface, suggesting that they differentiate into CR cells of the infrapyramidal blade. Reelin-positive, p73-negative interneurons are prominent in the prospective strata lacunosum-moleculare and radiatum of cornu ammonis as early as 14 GW; in the dentate molecular layer and hilus they appear around midgestation. We propose that CR cells of the human hippocampal formation belong to two distinct cell populations: an early one derived from the ventral cortical hem and mainly related to migration of the ammonic and dentate plates and a later appearing one derived from the dentate-fimbrial neuroepithelium, which may be related to the protracted neurogenesis and migration of dentate granule cells, particularly of the infrapyramidal blade.
منابع مشابه
Developmental roles of p73 in Cajal-Retzius cells and cortical patterning.
To examine the role of the p53 homolog p73 in brain development, we studied p73-/-, p73+/-, E2F1-/-, and reeler mutant mice. p73 in developing brain is expressed in Cajal-Retzius (CR) cells, the cortical hem, and the choroid plexus. p73-expressing CR cells are lost in p73-/- embryos, although Reelin is faintly expressed in the marginal zone. Ectopic neurons in the p73-/- preplate and cortical h...
متن کاملCharacterization of hippocampal Cajal-Retzius cells during development in a mouse model of Alzheimer's disease (Tg2576)
Cajal-Retzius cells are reelin-secreting neurons in the marginal zone of the neocortex and hippocampus. The aim of this study was to investigate Cajal-Retzius cells in Alzheimer's disease pathology. Results revealed that the number of Cajal-Retzius cells markedly reduced with age in both wild type and in mice over-expressing the Swedish double mutant form of amyloid precursor protein 695 (trans...
متن کاملExpression of p73 and Reelin in the developing human cortex.
Cajal-Retzius (CR) cells of the developing neocortex secrete Reelin (Reln), a glycoprotein involved in neuronal migration. CR cells selectively express p73, a p53 family member implicated in cell survival and apoptosis. Immunocytochemistry in prenatal human telencephalon reveals a complex sequence of migration waves of p73- and Reln-immunoreactive (IR) neurons into the cortical marginal zone (M...
متن کاملMicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium.
Vertebrate brain hosts a diverse collection of microRNAs, but little is known about their functions in vivo. Here we propose that mouse microRNA-9 (miR-9) targets Foxg1 mRNAs for proper generation of Cajal-Retzius cells in the medial pallium. miR-9 expression is mediolaterally graded, being most intense in the cortical hem; it contrasts with the Foxg1 expression in a reciprocal gradient. The 3'...
متن کاملMassive loss of Cajal-Retzius cells does not disrupt neocortical layer order.
Cajal-Retzius (CR) cells, the predominant source of reelin in developing neocortex, are thought to be essential for the inside out formation of neocortical layers. Fate mapping revealed that a large population of neocortical CR cells arises from the cortical hem. To investigate the function of CR cells, we therefore genetically ablated the hem. Neocortical CR cells were distributed beneath the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2004